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Figure 1: Standard image-based rendering synthesizes novel views of a scene by reprojecting the input image (a) using a coarse estimated
depth map (b). The technique cannot handle scenes with reflections and has problems in untextured regions, e.g., holes show up in the
reprojection (c). We perform image-based rendering in the gradient domain. Our technique synthesizes horizontal and vertical gradient
fields Fx and Fy, as well as an approximate solution S (d). The final image is obtained through Poisson integration (e). Our technique
naturally handles reflections and untextured regions.

Abstract

We propose a novel image-based rendering algorithm for handling
complex scenes that may include reflective surfaces. Our key con-
tribution lies in treating the problem in the gradient domain. We
use a standard technique to estimate scene depth, but assign depths
to image gradients rather than pixels. A novel view is obtained by
rendering the horizontal and vertical gradients, from which the fi-
nal result is reconstructed through Poisson integration using an ap-
proximate solution as a data term. Our algorithm is able to handle
general scenes including reflections and similar effects without ex-
plicitly separating the scene into reflective and transmissive parts,
as required by previous work. Our prototype renderer is fully im-
plemented on the GPU and runs in real time on commodity hard-
ware.
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1 Introduction

Traditional computer graphics can produce photo realistic render-
ings of scenes, but it requires meticulous modeling and fine tuning
of every scene detail including geometry, texture, and lighting, as
well as sophisticated and often slow global light transport simula-
tions. In contrast, image-based rendering takes a lighter approach
by starting from a set of captured photos of a real scene, recovering

the camera parameters and coarse 3D proxies, and then reprojecting
the input photos using the proxies as seen from a novel viewpoint.
This technique can maintain the photographic quality of the input
images without requiring explicit modeling of fine scene details.
Image-based rendering methods are widely in use today, particu-
larly for navigating urban and street level scenes.

A great challenge for all image-based rendering methods is to re-
liably recover scene depth in poorly textured areas. The resulting
uncertainty typically requires strong regularization and can lead to
rendering artifacts. Another problem is that traditional image-based
rendering methods recover only a single depth value per input pixel.
Thus, reflective or glossy scenes, which require modeling multiple
separate layers at different depths, cannot be handled, and lead to
ghosting. Sinha et al. [2012] addressed this issue for scenes with
reflections by decomposing each input photo into up to two addi-
tive layers, each with their own estimated depth. The technique,
however, has difficulties recovering accurate depths and discerning
reflective and non-reflective scene parts, which leads to various ar-
tifacts.

In this paper, we introduce a new approach to image-based ren-
dering that operates in the gradient domain. We use a standard
regularized multi-view stereo algorithm to recover the scene depth.
However, we interpret the result as the depth of the image gradients
rather than pixels. We then project the gradients to their new loca-
tions as seen from the novel viewpoint and reconstruct the image
through Poisson integration. To provide a data term for the Poisson
solver, we directly render the effect of a gradient moving within the
image. The details of our method are described in Sections 3–6.

This approach has many advantages over traditional image-based
rendering. Most importantly, any depth estimation technique works
best in the vicinity of strong gradients that can be reliably found in
neighboring images. In less textured regions, where depth estima-
tion is hardest, the gradients are nearly zero and thus do not con-
tribute much to our results. In contrast, previous methods tend to
produce artifacts in such regions. In addition, image-based render-
ing in the gradient domain is particularly well suited for handling
reflections and other non-Lambertian effects as well as reasoning
about occlusions. This is due to the fact that gradients in natural
images are sparse, and, hence, the gradients of two mixed layers
can be easily separated. (In fact, Levin et al. [2004] have used this
observation to unmix two reflective layers in a single image.)
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Figure 2: Sinha et al.’s method [2012] explicitly decomposes the input images into transmitted and reflected components. This separation is
not always clean. Note the ringing artifacts in the rear layers, that are also visible in their recomposed result. Our result does not suffer from
ringing artifacts.

2 Previous work

Image-based rendering takes pre-rendered or captured images of
3D scenes and interpolates these images to create novel in-between
views [Shum et al. 2007]. While image-based rendering can be per-
formed purely in ray space without the need for any 3D proxy ge-
ometry [Levoy and Hanrahan 1996], more accurate results (for the
same amount of data) can be obtained by mapping input views onto
some estimated proxy geometry and then blending between adja-
cent views [Chen and Williams 1993; Debevec et al. 1996; Gortler
et al. 1996; Buehler et al. 2001]. Over the years, a wide variety
of algorithms and representations have been developed to recover
and model such geometry, including global polyhedral models [De-
bevec et al. 1996; Gortler et al. 1996; Buehler et al. 2001] and piece-
wise planar “impostors” [Shade et al. 1998; Popescu et al. 2006;
Sinha et al. 2009].

Several recent approaches are concerned with handling scenes
where accurate depth estimation is challenging. Eisemann et
al. [2008] present a technique to correct misaligned projections on
coarse 3D proxies. Goesele et al. [2010] turn uncertain pixels into
randomized “ambient point clouds”, effectively replacing recon-
struction errors by less objectionable noise. Chaurasia et al. [2013]
hallucinate plausible depth in poorly reconstructed regions based
on appearance similarity to well reconstructed regions.

Even with 3D geometry, the movement of visual features in scenes
that contain both reflected and transmitted light cannot be correctly
modeled, since two different motions can be present at such loca-
tions. (Reflections also do not obey rigid epipolar geometry when
the reflective surfaces are strongly curved or undulating [Criminisi
et al. 2005].) A lot of research has been done in recovering such
transparent motions in computer vision using both layered motion
models [Shizawa and Mase 1991; Bergen et al. 1992; Irani et al.
1994; Ju et al. 1996; Szeliski et al. 2000] as well as more com-
plex models that can handle multiple reflections or use frequency-
domain analysis [Diamant and Schechner 2008; Beery and Yeredor
2008]. The separation and modeling of specular highlights has also
received a lot of attention [Bhat and Nayar 1998; Carceroni and Ku-
tulakos 2002], as has the separation of reflections using polarizing
filters [Schechner et al. 1999], focus [Schechner et al. 2000] and the
analysis of transparency in single images [Levin et al. 2004].

Relatively less work, however, has focused on recovering trans-
parent and reflected motions for the purpose of image-based ren-

dering. Szeliski et al. [2000] demonstrate how to model a scene
with local planar depth approximations and to then separate the
colors of the transmitted and reflected light using constrained least
squares. Tsin et al. [2006] recover general depth maps correspond-
ing to the transmitted and reflected light using a graph-cut optimiza-
tion framework that estimates up to two depths per pixel. Most
recently, Sinha et al. [2012] introduce a two-stage approach that
uses semi-global stereo matching [Hirschmüller 2008] followed by
a piecewise-planar approximation to model complex scenes with re-
flections and gloss. After estimating the contribution of transmitted
and reflected light in each image, they develop a real-time image-
based rendering system that blends between the original images us-
ing this additive two-layer decomposition. While the results they
demonstrate often work well, their approach sometimes produces
visual artifacts near curved surfaces and in areas where either the
scene reflectivity and/or the 3D geometry is inaccurately estimated.
Most often, these artifacts are visible in the separated layers, which
can have “ghosts” corresponding to the other layer or ringing due
to errors in the least-squares fitting stage (Figure 2).

In this paper, we sidestep the need to estimate two complete proxy
geometries and to separate each input image into transmitted and
reflected light. Instead, we concentrate on getting good motion
(depth) and occlusion estimates at strong gradients in the image,
and then use Poisson reconstruction to synthesize each new frame
from the motion of the displaced gradients.

Several recent image interpolation techniques synthesize results in
the gradient domain. Mahajan et al. [2009] present a technique
that determines optimal linear paths in image space between pairs
of pixels. They use gradients as part of the matching cost and to
reduce artifacts during rendering. The interpolated frames are re-
covered using a 3D space-time Poisson reconstruction, where the
images to be interpolated are used as boundary conditions. Linz
et al. [2010] present a related approach where interpolated views
are generated by warping gradient images based on a dense flow
estimate followed by a similar Poisson integration. Our algorithm
differs from these approaches in that it more deeply exploits the
fundamental properties of gradients such as sparsity and separation
of reflections: the ability to move individual gradients enables han-
dling reflections and other non-Lambertian effects. Our system also
uses a full 3D scene model and can render the scene from arbitrary
viewpoints. We do not use the input images as boundary conditions
since we are not restricted to interpolating images, but instead pro-
pose a novel data term to regularize the 2D Poisson reconstruction.



3 Overview

Given a set of input photos, our goal is to synthesize images from
novel viewpoints by performing image-based rendering in the gra-
dient domain. In traditional image-based rendering, the 3D scene
is modeled as (potentially coarse) geometric proxies and then used
to reproject the input images into a novel view. In this work, in-
stead, we consider how the image of a scene changes if we move
the viewpoint and interpret this as movement of the image gradients
(i.e., the edges between pixels) in the rendered image. In order to
achieve physically correct movement, we assign 3D positions to the
gradients, which enables us to render them from any viewpoint.

It is straightforward to assign 3D positions to surface texture gradi-
ents. If the gradient is caused by a scene discontinuity (occlusion
boundary), however, it is less obvious what 3D position it should
be assigned. In this case we assign the gradient the depth of the
occluder and achieve (at least approximately) the correct behavior.
Finally, there are gradients on semi-transparent reflective surfaces,
e.g., a sheet of glass with the underlying scene shining through.
This case is very challenging for traditional reconstruction meth-
ods. However, the gradients from the two layers are typically still
well separated, due to the property that gradients in natural images
are sparse. For this reason it is unlikely that edges from the two lay-
ers coincide; we will most likely observe no (strong) gradient at a
pixel, or only a single (strong) gradient. See Figure 3 for an illustra-
tion. This property has been used previously to separate reflections
in a single image [Levin et al. 2004].

3.1 Scene reconstruction

The first step in most image-based rendering systems is estimat-
ing the camera parameters as well as (dense) depth maps for the
input images. We use a standard approach for this stage in our sys-
tem. In particular, we use a structure from motion pipeline similar
to the one described by Snavely et al. [2006] to estimate the lo-
cation, orientation, and intrinsic parameters for the input cameras.
Next, we run plane sweep-based multi-view stereo matching with
normalized cross-correlation (NCC) as the photometric consistency
measure and combine it with graph cuts [Kolmogorov and Zabih
2002] to extract a dense depth map for each input view. In all of
our experiments, we use 256 discrete depth labels.

Given two horizontally or vertically neighboring pixels p1 and p2,
we compute pairwise regularization weights

w12 =



0 d1 = d2,

0.005 ‖d1−d2‖= 1,
0.200 ‖d1−d2‖> 1, ‖g1‖< ε, ‖g2‖< ε,

c6 ‖d1−d2‖> 1, ‖g1‖> ε, ‖g2‖> ε,

0.005 else (high and low gradient magnitude),

(1)

where d1,d2 are the depth labels, and g1,g2 are the color gradients
at the pixel positions. c6 = g>1 g2/‖g1‖‖g2‖ is the dot product of
the normalized gradient vectors. We used ε = 0.075 in all our ex-
periments. This formula favors consistent depth between gradients
with low magnitude (as they most likely belong to the same sur-
face) and between gradients with a higher magnitude and similar
direction (since they likely belong to the same edge). Depth dis-
continuities are preferred between two gradients with a high and a
low magnitude.

In contrast to traditional approaches, we only need reliable depth
estimates at pixels with non-negligible gradient magnitudes. For-
tunately, these are just the locations where any vision-based 3D re-
construction method works best. Figure 3 shows the reconstruction
results with and without regularization. In the right column, we
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Figure 3: Stereo reconstruction, unregularized (top) and regular-
ized (bottom). In the right column we modulated the depth maps by
gradient magnitude to visualize that the depth is correct at image
edges. Regularization produces more consistent results, while still
being correct at strong gradients.

modulate the depth map by the gradient magnitude to show that the
depth is correct at image edges (despite regularization that favors
piecewise planar surfaces). In other words, the depth is correct in
places where it matters for our method, whereas wrongly estimated
depths away from image edges will affect traditional image-domain
rendering methods, where they lead to artifacts.

3.2 Rendering

Our method reconstructs the novel view first in the gradient domain,
by computing two gradient fields Fx, Fy, for horizontal and verti-
cal gradients, respectively, and then obtains the final color image I
through integration. Note that whenever we talk about gradients in
this paper, we are referring to forward differences, i.e., the gradients
can be thought to be localized on the right and bottom edges of pix-
els for horizontal and vertical gradients, respectively (see Figure 5).

Computing the interpolated gradient field is easy: we start with an
empty image and simply splat the gradients where they project to
in the novel view using additive blending. The challenge lies in the
integration step, which recovers the color image. Due to noise or
missing data, the gradient fields are generally not fully integrable.
Thus, we obtain the color image with the best matching gradients
by solving a Poisson problem [Pérez et al. 2003]. However, this
solution is only defined up to an arbitrary additive constant. Unlike
previous work [Pérez et al. 2003; Mahajan et al. 2009; Linz et al.
2010] we do not have a fixed boundary and thus cannot use bound-
ary conditions to obtain a non-singular linear system. Instead we
regularize the solution with a weakly weighted data term.

We tried several simple data terms, such as a constant color or the
depth reprojected input image (Figures 6a–b). However, our par-
ticular application gives us a better option (Figure 6d). Since we
start with regular images (the inputs) and render the scene from a
different but similar perspective, we can create the result images
using a pure image-domain rendering approach. More specifically,
we observe that shifting a gradient in an image by a number of
pixels will simply change the value of the pixels over which the
gradient passed by the gradient magnitude, which is either added or
subtracted depending on the direction of the movement. This can
be implemented in a simple rendering step (see Sections 4 and 5 for
details). In a perfect world where the 3D reconstruction would yield
accurate and noiseless results, this would theoretically give perfect
results. However, since vision is not perfect, this solution contains



-2 -2 +5

5 5 5 5 7 7 7 2 2 2 2 2 2 2

+2

+5 +5

5 5 75 5 5 5 7 2 2 2 27 7

-5

+2

+2

-5

-5

Figure 4: Computing the approximate solution in the special case
of pure horizontal camera motion. The top row shows a scanline
from the source image with the two non-zero gradients highlighted.
The gradients shift to their new locations (on the same scanline
because of the restricted camera motion model). As gradients shift
right across the image, their value is subtracted from the underlying
pixels (bottom rows).

artifacts. It still suffices, however, as an approximate solution (or
data term), S, which we can use to weakly bias the additive offset
of the Poisson problem.

Overall, we solve the following optimization problem:

min
I

(
∂

∂x I−Fx
)2

+
(

∂

∂y I−Fy
)2

+λ
(
I−S

)2
, (2)

where λ = 0.1 is used to weakly bias the solution towards our ap-
proximation. We implemented a simple solver using the Conjugate
Gradient Method [Shewchuk 1994] in CUDA that runs in real time
on the GPU. Implementation details are provided in the supplemen-
tary material.

As with other view interpolation systems, we render a novel view
in our system always from two reference images. For this, we find
the respective closest input camera to the left and to the right of the
novel view. We then compute the term images Fx,Fy,S separately
for both inputs and combine each corresponding pair of terms into a
single term image using linear blending weights proportional to the
inverse distance of the cameras. Finally, we solve a single combined
Poisson system using Equation 2.

4 Horizontal camera motion

In this section, we describe a simple special case that illustrates the
key concepts of our method while avoiding some of the complica-
tions that arise in the general case. In this setting, the camera moves
horizontally (basically corresponding to a rectified setting). In this
case, the epipolar lines are parallel to the x-axis and all points move
only horizontally between the original and novel viewpoints, with-
out any scaling. This makes splatting the gradient fields Fx and
Fy particularly easy: we distribute each gradient’s value to the two
nearest pixels using linear splat kernels.

To compute the approximate solution S, we initialize it by copying
the input photo and then shift the horizontal gradients one by one
from their original locations to their new locations, updating S as
the gradients move across each pixel (Figure 4). For this operation,
we consider the gradients to be located on the boundary between
pixels (red lines in Figure 4). A gradient that shifts right is sub-
tracted from the image, and a gradient that shifts left is added. This
operation is only applied to the horizontal gradients in this section.
The vertical gradients do not affect the approximate solution S. In
practice, we implement this operation by rendering a one pixel wide
horizontal line for each gradient, connecting the original and new
locations, using the appropriate color value and additive blending.

Given Fx, Fy, and S we can now solve the Poisson problem given in
Equation 2 using the conjugate gradient solver.

5 General camera motion

Handling general camera motion involves the same steps as the hor-
izontal case described before: splatting the gradient fields Fx,Fy,
and computing an approximate solution S. However, it also poses
some new challenges that we did not encounter before. First of all,
gradients can now move both horizontally and vertically. Moreover,
the mapping from original to novel view can involve rotation and
scaling (of pixels) that we have to handle.

Let us define some notation first. We consider the pixels in the
original image as fronto-parallel squares in 3D world space, whose
corner vertices v0, . . . ,v3 are located at the depth estimated as de-
scribed in Section 3. The horizontal gradient is assumed to be lo-
cated at the right boundary, v1v3, and the vertical gradient at the
bottom boundary, v2v3, colored red and green in Figure 5, respec-
tively.

Let To = PMo and Tn = PMn be the transformation matrices that
map homogeneous world vectors to screen space for the origi-
nal and novel view, respectively. P is a 4× 3 projection matrix,
and Mo,Mn are 4× 4 model-view matrices, all defined for a right
handed coordinate system (e.g., as in the OpenGL API).

5.1 Splatting gradients

When generating the gradient term images, we need to splat line
segments rather than points, to account for zoomed and rotated gra-
dient boundaries in the novel view. For each horizontal and vertical
gradient, we rasterize a 1 pixel-thick line segment connecting Tnvi
and Tnv j, where i and j index the two corners involved. The gra-
dient values are splatted in an additive manner as before. Figure 5c
shows the spines of these anti-aliased lines as dark red and green
lines.

5.2 Computing the approximate solution

The goal of computing the approximate solution remains the same
as before, but we now have to consider both horizontal and ver-
tical gradients. We first compute the exact continuous geometry
of the region affected by a gradient by forming a quad Q con-
necting the two pixel corners in the original and novel views, i.e.,
Q = (Tovi,Tov j,Tnv j,Tnvi). In Figure 5b we show the resulting
geometry for a pixel’s horizontal and vertical gradients. The quads
are rasterized to determine the pixels involved (Figure 5c). For a
horizontal/vertical gradient that moves right/down, its value is sub-
tracted from the frame buffer, otherwise it is added (Figure 5d). A
simple way to implement this condition is to test whether the quad
is front- or back-facing.

5.3 Rectified streaks

Not rectified Rectified

A complication when computing the
approximate solution in the general
case is that gradients are not all mov-
ing in the same direction anymore.
This can lead to artifacts, e.g., gaps
opening between neighboring gradi-
ents and clutter due to gradients over-
lapping chaotically (see inset figure).
We correct this behavior by rectifying
the original and novel cameras, so that all gradient shift directions
become aligned. (Alternatively, we could use a more sophisticated
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Figure 5: Computing the approximate solution in the general case. Each gradient (a) generates a quad connecting its locations in the
original and novel view (b). The quad is rasterized (c) and splatted with additive blending updating the underlying image (d). In Figures (c)
and (d), the small pixels can also be thought of as the super-samples used in anti-aliasing. The dark red and green lines in (c) are the spine
of the 1-pixel wide anti-aliased lines used to splat the gradients into the gradient buffer.
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Figure 6: Comparing different data terms (top row) for regularizing the Poisson reconstruction (bottom row): (a) a constant middle gray
data term does not always reproduce the correct colors, (b) setting the data term to a depth reprojected image produces artifacts in poorly
reconstructed (typically untextured) regions, (c) our unrectified data term suffers from clutter, (d) our rectified data term yields the best
results.

model for the pixel geometry, deviating from the fronto-parallel as-
sumption.)

Rectifying two cameras involves rotating them such that the epipo-
lar lines are aligned with the x-axis [Loop and Zhang 1999]. We
achieve this by replacing the original model-view matrices with
new ones,

Mo :=
[

R −Rto
0> 1

]
, Mn :=

[
R −Rtn
0> 1

]
, (3)

where to and tn are the positions of the original and novel cameras,
and R =

[
rright rup −rfront

]> is the usual rotation matrix.

The camera right vector is set parallel to totn,

rright =
tn− to

‖tn− to‖
, (4)

and the two other base vectors are obtained through cross products,

rfront =
wup× rright∥∥wup× rright

∥∥ , and (5)

rup = rright× rfront. (6)

Here, wup is the global world space up vector.

There are some issues with this approach. First, the rotation
changes the novel view, so we would have to use image warping
in a post-process to get the desired result. Warping is undesirable
because it can introduce sampling artifacts. More critically, the rec-
tified views can become extremely distorted under certain condi-
tions, in particular, if one camera center approaches the frustum of
the other.

We remedy both problems by computing an extra screen space
homography H that maps the rectified novel view back to the
non-rectified novel view, and applying this homography to both
novel and original geometry before rasterization, i.e., H = ToT+

n =

ToT>n
(
TnT>n

)−1
. The final transformation matrices are therefore

T′o = HTo and T′n = HTn. This procedure avoids post-process im-
age warping and any problems due to distortion and produces im-
proved results, as shown in Figures 6c–d.

6 Occlusions and disocclusions

A major challenge for image-based rendering approaches are oc-
clusions and disocclusions. In traditional image-based rendering
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Figure 7: Occlusions and disocclusions. Note how the disocclu-
sions to the left of the neck are smoothly filled in by the Poisson
integration.

approaches, handling occlusions requires careful reconstruction of
the proxy geometry at the boundary in order to avoid artifacts due
to sharp but incorrect edges. Disocclusions are similarly complex
since the geometry that becomes disoccluded needs to be mod-
eled as well, e.g., using a multi-layered representation [Shade et al.
1998; Zitnick et al. 2004].

In the gradient domain, occlusions must be handled differently, be-
cause gradients with different depths do not necessarily occlude
each other; for reflective or semi-transparent surfaces, gradients on
different layers just add together.

A naı̈ve approach is to not handle occlusions at all, i.e., splat all
gradients to their projected position and integrate the resulting gra-
dient field. If the input image density is high enough, one can rely
on blending between images from different viewpoints to avoid ar-
tifacts at the cost of larger use of resources. In many cases, this
works surprisingly well since in particular disocclusions are filled
in smoothly and consistently by this approach (see Figure 7, to the
left of the head). However, in scenes with high amounts of oc-
clusions, this leads to ghosting artifacts when gradients of opaque
surfaces are added together. In the following, we therefore develop
a more principled approach for detecting and handling occlusions
and disocclusions.

6.1 Detection and modeling

As we cannot use depth as a sole indicator for occlusions due to
reflections, we need to do an explicit search for gradients that van-
ish at occlusion boundaries. Given a reference view, we first detect
whether its gradients are still visible in one of the neighboring views

Reference image

Unregularized visibility

Neighbor image

Regularized visibility

Figure 8: Input images and gradients classified according to their
visibility in a neighboring view. Yellow: gradient visible. Blue:
gradient occluded. Red: both occluded and visible gradients are
projected to this location. All colors are weighted with the gradient
magnitude to improve visualization.

at (or near) the location predicted by the epipolar geometry. This
problem is closely related to the reconstruction as described in Sec-
tion 3.1 but requires a more robust formulation due to the fact that
we need to argue locally (for a single neighboring image) and not
globally for the complete set of input images.

In order to determine whether a gradient is visible in a neigh-
boring view, we compute a similarity measure c between single-
pixel gradients which is defined as the product of the angle cost
c6 = g>1 g2/‖g1‖‖g2‖ (as introduced near Equation 1) and a cost cs
that measures the intensity difference between two gradients:

c = ck
6 · cs, (7)

cs = min
(
‖gn‖
‖gr‖

,
‖gr‖
‖gn‖

)
. (8)

gr is the gradient in the reference view at location Tov, gn is the
gradient in the neighboring view at the corresponding location Tnv,
and k determines the angular selectivity of the measure (we always
use k = 10). The intuition behind this is that gradients should only
match if they have a similar direction as well as a similar magnitude.
In order to be robust to various errors (e.g., miscalibration, slightly
non-planar reflectors), we do not strictly enforce the epipolar ge-
ometry. Instead of using c directly we compute cmax = maxN c
in a 5× 5 pixel neighborhood N around Tnv. In other words, we
compute the maximal similarity score within the neighborhood N
around the location Tnv predicted by the epipolar geometry.

To finally determine whether a given gradient is visible in each of
the other views, we solve per-view a binary graph-cut with the data
terms cmax (occluded) and 1− cmax (visible) for the respective la-
bels. The regularization weights between neighboring pixels are
computed with a simple Potts model, assigning 0 if both labels are
identical and 0.3 if they differ (see Figure 8).

For the rendering approach described in the next section, we not
only need to determine which gradients eventually become oc-
cluded, but also the 3D position of their occluders. Since this is
generally ambiguous in the reflective case, we use a simple heuris-
tic: If a gradient v becomes occluded between neighboring views i
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Figure 9: Rendering occlusions. The candidate and occluding gra-
dient positions in the original (o) and novel (n) views are projected
along the sright vector and their values are compared. The occluded
half-space is indicated by red shading. Left: the gradient is oc-
cluded since vo < oo but vn > on; the quad is clamped. Right: the
gradient is not occluded since vo < oo and vn < on.

and j, its occluder o must cross the epipolar line of v between i and
j and it must be closer to the camera than v. We therefore search
along the epipolar line and select the first gradient with magnitude
larger than 0.001 and with a smaller depth than v as the occluder o.

6.2 Rendering

Let v be a gradient and o its occluder. If the novel camera position
is not exactly on the connecting line between the input camera posi-
tions in which v and o are defined, they will generally not intersect
in screen space. Therefore, to be more robust we consider projec-
tions onto a common screen space axis sright, where sright is the
right camera axis rright projected into screen space. The resulting
original and new projections onto this axis are therefore

vo = (Tov)>sright, vn = (Tnv)>sright, (9)

with analogous definitions for oo and on.

If the order of v and o flips when comparing original and novel
views, i.e.,

(vo < oo) XOR (vn < on), (10)

the gradient v is occluded. In other words, on defines a half-space
in which v is occluded. Figure 9 illustrates this situation.

When rendering the gradient terms Fx and Fy, we evaluate Equa-
tion 10 in the vertex shader, and simply discard occluded gra-
dients. When rendering the approximate solution S we cannot
simply discard vertices, because this fails to account for the ad-
ditive sweeping effect of the partially occluded gradient (until it
becomes occluded). Instead, we clamp the quad Q (see Sec-
tion 5.2) against the half space defined by on, i.e., we replace
Q←

(
Tovi,Tov j,clamp(v j),clamp(vi)

)
, where

clamp(v) = Tov+(Tnv−Tov)
on− vo

vn− vo
. (11)

This clamping operation is visualized in Figure 9.

7 Results

We have developed a prototype renderer implementation in C++ us-
ing OpenGL. The Poisson integration is implemented with CUDA
(please see the supplementary material for implementation details).
We used this implementation to generate all the figures in the paper
and in the supplementary material.

Render step Average Max Min St. dev.
Horz. gradients 1.056 1.242 0.738 0.174
Vert. gradients 1.132 1.313 0.814 0.170
Approx. solution 4.721 8.763 1.742 1.650
Poisson 13.343 14.033 13.105 0.358
Total 22.616 27.856 18.761 2.089

Table 1: Rendering times (in milliseconds) averaged across 5 dif-
ferent datasets showing the distribution of times according to ren-
dering components / stages.

Performance: All rendering stages except the approximate solu-
tion run in constant time for a given input image size. The approx-
imate solution stage is fill rate bound, and its performance depends
on the visible length of the streaks.

In Table 1, we summarize timings for 5 different datasets. Each
dataset uses input images of size 640× 480 and is rendered at an
output size of 720×480 on an NVIDIA GTX 680. For each dataset,
we measured performance for ten random novel views along an
arc connecting the input cameras, yielding the aggregate statistics
shown in Table 1.

Results: We tested our approach on a variety of input sequences
captured using hand-held photography under mostly horizontal
camera motion. (We use primarily one-dimensional motion to make
the interactive view navigation simpler, as was done by Sinha et
al. [2012].) Please see our supplementary video and Web page
for more results, since these show the visual artifacts much more
clearly than the still images in this paper.

Figure 10 shows view extrapolation results produced from just a
single reference color image and depth map. As you can see, stan-
dard image-based rendering has great difficulty dealing with the
two depths present in the wood grain table top and the reflected
window. In contrast, our technique handles this reflective scene
without difficulty. Figure 2 and Figure 11 compare our results to
[Sinha et al. 2012] and show the advantage of not having to separate
various layers. Results for a non-reflective scene are shown in Fig-
ure 12. Compared to regular image-based rendering or piecewise
planar solutions, our technique introduces fewer artifacts when the
proxy geometry contains small errors. In particular, it tends to pro-
duce higher quality for datasets with wide base lines, as long as the
proxy geometry is accurate. In the supplementary material we test
this by rendering a scene using only a fraction of all input images,
while the proxies were computed from the full dataset.

Limitations: Compared to previous image-based rendering ap-
proaches, our new technique almost always produces improved re-
sults. However, there are still cases where it produces visible ar-
tifacts. The most common case is when the stereo algorithm as-
sociates incorrect depth values with a gradient or edge. This oc-
curs most often in two situations: for horizontal edges, since their
depth is hardest to estimate for mostly horizontal camera motion,
and for cluttered random textures. A challenging example for the
second case is the TREE scene, which we included in the supple-
mentary material. The occlusion detection algorithm also occa-
sionally makes mistakes, which results in ghosted gradients and
edges extending beyond the regions of a reflective surface. Finally,
our rendering approach requires the use of specialized shaders and
higher-end graphics hardware, which means that it may not run on
all computing platforms (e.g., under-powered mobile phones).



Input image Standard view extrapolation Our approximate solution S Our integrated result

Figure 10: View extrapolation using a single image and depth map for the SUNROOM dataset. The same proxy geometry was used for
standard image-based rendering and our method.

Input image Ground truth neighbor view [Sinha et al. 2012] Our result

Figure 11: For the MUSEUM dataset, the planar proxies of the reflection layers used by Sinha et al. cause incorrect reflections in the bottom
left. Please see the video to see these artifacts more clearly.

Input image Standard IBR Piecewise planar solution Our result

Figure 12: Input images and sample novel views (zoomed in) for the CONFERENCE dataset. The same proxy geometry was used for standard
image-based rendering and our method. Please see the video for details.

8 Discussion and conclusions

In this paper, we have developed novel gradient-based 3D recon-
struction and image-based rendering algorithms. Compared to tra-
ditional image-based modeling and rendering systems, which asso-
ciate one or more depths and colors with each pixel in a reference
view, our method associates depths with gradients and reconstructs
both a novel gradient image and a lower-fidelity guide image from
the gradient motions. This has the advantage of both handling mul-
tiple depths such as seen in reflective surfaces and mitigating depth
errors. For example, traditional image-based rendering may pro-
duce “floater pixels” or “holes” at pixels with erroneous depths in
low-texture regions. With our approach, errors at such pixels have
little effect, since they contribute very little (if at all) to the final
rendering.

While our results look promising, there are several areas we would
like to explore in future work. One such area is to re-examine the
resampling we perform when forward rendering gradients as anti-
aliased lines. Using a two-pass rendering algorithm, which first
computes a displacement field in the new view and then resam-
ples the gradient image, may improve the quality of the render-
ing [Shade et al. 1998]. We would also like to explore improved
methods for estimating depths, including the use of alternative (e.g.,
gradient-based) matching cost functions as well as representations
and regularizers that support multiple depth estimates per pixel
[Tsin et al. 2006]. Finally, we would like to apply our new tech-

niques to an even wider range of image-based rendering scenarios,
e.g., large-scale outdoor environments and scenes with curved re-
flectors.
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