
Implementation Details for
“Predictable High-Quality Image Completion”

1 Image Completion Pseudocode

In this supplementary document we provide commented pseu-
docode for our image completion algorithm. It is more or less
a straight-forward implementation of [Wexler et al. 2007] using
PatchMatch [Barnes et al. 2009] for fast approximate nearest-
neighbor search. Refer to Figure 1 for a list and explanations of
symbols. In practice, the source image s and target image t are
stored interleaved in a single image, however, we are using dis-
tinct symbols here for clarity. The FILLSMOOTH function is not
included in the code below. It fills the missing region with a smooth
membrane. We implemented it using iterated laplacian smoothing.

// The outer loop
1: procedure COMPLETION
2: for l← lmax downto 0 do
3: if l = lmax then

// Initialize nearest-neighbor field
4: for all (xt, yt) ∈ Tl do
5: f l(xt, yt)← randomly choose from Sl

6: end for
// Smoothly fill the target image

7: tL ← FILLSMOOTH(l)

// Do a few passes without updating the result image
8: PASS(l, false)
9: else

10: UPSAMPLE(l)
11: end if
12: PASS(l, true)
13: end for
14: end procedure

// Synthesize current level.
15: function PASS(l, freeze-result)
16: Npasses ← max (Nmin, Nmax −Nreduce · (lmax − l))
17: repeat Npasses times
18: for k ← 1 to Niter do
19: down-direction← [k mod 2 = 0]
20: ITERATE(l, down-direction)
21: end for

// No updates when initializing the coarsest level.
22: if freeze-result = false then
23: AVERAGE(l)
24: end if
25: end repeat
26: end function

// Upsample nearest-neighborfield from coarse level.
27: function UPSAMPLE(l)
28: for all (xt, yt) ∈ Tl do

// Upsample coordinate from coarse level.
29: (xs, ys)← f l+1

(
bxt

2
c, b yt

2
c
)
·2+(xt mod 2, yt mod 2)

// Assign upsampled coordinate only if it is valid.

30: f l(xt, yt)←
{
(xs, ys), if (xs, ys) ∈ Sl

randomly choose from Sl, else
31: end for
32: AVERAGE(l)
33: end function

xs, xs pixel coordinates in source image
xt, xt pixel coordinates in target image
l level
lmax coarsest level
f l nearest-neighbor field
tl result
sl source
Tl set of valid patch centers in target image
Sl set of valid patch centers in source image
Kl set of known pixel locations
Hl set of missing pixel locations
Rl(x, y) restricted search space of pixel (x, y)
dl distance to closest known pixel
P (x, y) 7×7 neighborhood centered around (x, y)
Nmax = 50 number of passes at coarsest level
Nreduce = 5 reduction in number of passes per level
Nmin = 2 minimum number of passes per level
Niter = 4 number of PatchMatch iterations per pass
wl, hl image dimensions

Figure 1: Symbols used throughout the paper and in the pseu-
docode

/* The overlapping patches are averaged together to generate
an updated result image. */

34: function AVERAGE(l)
35: for all (xt, yt) ∈ Hl do
36: color← (0, 0, 0), wsum ← 0

// Loop over all patches who overlap the current pixel
37: for all (x, y) ∈ P (xt, yt) do
38: (xs, ys)← f l(x, y) + (xt − x, yt − y)

/* Give higher weight to pixels closer to the hole
boundary. γ = 2. */

39: w ← γdl(xt,yt)−dl(x,y)

40: color← color + w · sl(xs, ys)
41: wsum ← wsum + w
42: end for
43: tl(xt, yt)← color

wsum
44: end for
45: end function

// A PatchMatch iteration over the whole image
46: function ITERATE(l, down-direction)

// left/up offset on down pass and right/down on up pass

47: ofs←
{
−1, if down-direction = true
+1, else

// Use reverse scanline order if down-direction = false
48: for all (xt, yt) ∈ Tl in normal/reverse scanline order do
49: cur-dist← PATCHDIST(l, xt, yt, f

l(x, y))

// Horizontal propagation
50: if (xt + ofs, yt) ∈ Tl then
51: (xnew, ynew)← f l(xt + ofs, yt)− (ofs, 0)
52: cur-dist← TRYUPDATE(l, xt, yt, xnew, ynew, cur-dist)
53: end if



// Vertical propagation
54: if (xt, yt + ofs) ∈ Tl then
55: (xnew, ynew)← f l(xt, yt + ofs)− (0, ofs)
56: cur-dist← TRYUPDATE(l, xt, yt, xnew, ynew, cur-dist)
57: end if

// Window search
58: rad← max(wl, hl)
59: while rad > 0 do

// Try a random coordinate within square window
60: (xnew, ynew)← f l(x, y) + random2D(−rad, rad)
61: cur-dist← TRYUPDATE(l, xt, yt, xnew, ynew, cur-dist)
62: rad← d rad

2
e

63: end while
64: end for
65: end function

/* Updates the nearest-neighbor field at (xt, yt) only if the new
coordinate is valid and provides a lower patch distance. */

66: function TRYUPDATE(l, xt, yt, xnew, ynew, cur-dist)
67: if (xnew, ynew) ∈ Rl(xt, yt) then
68: new-dist← PATCHDIST(l, xt, yt, xnew, ynew)
69: if new-dist < cur-dist then
70: f l(xt, yt) = (xnew, ynew)
71: return new-dist
72: end if
73: end if
74: return cur-dist
75: end function

/* Computes the SAD of two 7×7 patches. */
76: function PATCHDIST(l, xt, yt, xs, ys)
77: dist← 0
78: for all (x′t, y′t) ∈ P (xt, yt) do
79: (x′t, y

′
t) = (xs + x′t − xt, ys + y′t − yt)

80: dist← dist +
∣∣tl(x′t, y′t)− sl(x′s, y

′
s)
∣∣

81: end for
82: return dist
83: end function

2 Features for Quality Prediction

2.1 Overview

Features for a pixel’s quality prediction are computed as follows.
First, for every 16x16 region in the image that contains known
pixels, we pre-compute 19 statistics of basic visual features in the
known area (edges, curves, lines, color, see subsections below for
details). Then, given an unknown pixel, we find all its associated
regions and compute a weighted average of the 19 statistics (us-
ing the number of known pixels in a region as its weight). Finally,
we augment the pixel’s feature vector by the its y-coordinate and
Euclidian distance to the closest known pixel in the image.

2.2 Edge Features (1+3)

We compute a set of edge segments using steerable filters. Steer-
able filters are useful as they have the same response to step edges
and ridges. We use a second order quadrature pair of filters (G2 and
H2, as described in [Freeman and Adelson 1991]). These are the
steps in computing an edge response: 1) We compute the dominant
orientation using the analytical solution for the orientation energy
(this only finds one dominant direction as we use the second order
filters). 2) Then we use the computed orientation angle to steer the
filters in that direction and get filter responses G2 and H2. 3) We
then find a peak in the magnitude = (G2*G2 + H2*H2) by searching

for a maximum in the direction perpendicular to the direction of the
dominant orientation. 4) If we find a peak in step (3) that indicates
the presence of a line or edge. 5) We do a quadratic fit on the mag-
nitude to find the x,y position of the edge reponse up to sub-pixel
accuracy. We derive four edge features from this data: the first one
is a scalar describing the fraction of pixels that are edges. The other
three are the mean, standard deviation, and entropy of the distribu-
tion of edge orientations (computed from a 180-bin histogram).

2.3 Curve and Line Features (3+3)

If there are more than eight edges in a region, we detect curves
from edges by greedily growing edge elements along their orienta-
tion as long as there are neighboring edges with matching orienta-
tion. Then, we use the Ramer-Douglas-Peucker algorithm for line
simplification [Douglas and Peucker 1973]: at each stage a curve is
examined and split at the point that is the farthest from the line join-
ing the end points of the curve. If the distance is less than a thresh-
old then the simplification stops otherwise it recursively operates
on the two sub curves split at the farthest point. The lengths of the
resulting curve and line segments are binned into two 500-bin his-
tograms, respectively. The mean, standard deviation, and entropy
of the two length distributions serve as curve and line features.

2.4 Color Features (3+3+3)

For color statistics, we simply use mean, standard deviation, and
entropy of 256-bin color histograms, one for each channel (R, G,
B).

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. Patchmatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. on Graphics
(Proceedings of Siggraph) 28, 24:1–24:11.

DOUGLAS, D., AND PEUCKER, T. 1973. Algorithms for the re-
duction of the number of points required to represent a digitized
line or its caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization 10, 112–122.

FREEMAN, W. T., AND ADELSON, E. H. 1991. The design and
use of steerable filters. IEEE Transactions on Pattern Analysis
and Machine Intelligence 13, 891–906.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time video completion. TPAMI.


